APPROXIMATE SOLUTION OF THE INTERNAL PROBLEM
FOR. A TURBULENT BOUNDARY LAYER
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The development of a turbulent boundary layer in an axisymmetric channel is analyzed with an
an account of the mutual effects of the boundary layer and the core of the flow. The coordi-
nates of the separation point, the coordinates of the junction, and other characteristics are
found as functions of the Reynolds number and the channel geometry. A simple approximate
method is proposed for calculating the boundary layer in a channel with an arbitrary curvi-
linear generatrix,

In solving internal problems in boundary-layer theory one must take into account the mutual effects
of the boundary layer and the core of the flow. These effects are usually taken into account by the method
of successive approximations [1, 2]; in several cases the calculation must be repeated several times or
carried out for parts of the channel, rather than for the channel as a whole, in order to achieve the neces-
sary accuracy. In particular, this is true of calculations carried out for divergent channels {2].

Below we solve the problem of the development of a turbulent boundary layer in an axisymmetric
channel, taking account of the mutual effects, by reducing the problem to a single integro-differential equa~
tion, as was done for planar channels and laminar flow in [3]. To calculate the characteristics of the
boundary layer we will use the integral method of [4], which is based on a joint solution of the integral
momentum and energy relations and the use of experimental data. In this approach, the problem is de-
scribed by:
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i.e., the integral momentum and energy relations and the divergence equation, respectively. As in [3],
we are using a coordinate system whose x axis coincides with the symmetry axis of the channel. As was
shown in [3], the equations written in terms of this coordinate system are essentially the same as the
ordinary equations, written in terms of the coordinate system in which the x axis is reckoned along the
surface in the flow. '

In Zgs. (1)-(3), the characteristic boundary-layer thicknesses are defined by
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Using these characteristic thicknesses, we can convert the integral relations for axisymmetric
flow [2, 6], written with an account of the effect of transverse curvature, to the form of the ordinary equa-
tions, written under the assumption that the boundary layer is thin in comparison with the radius curva-
ture of the surface. We can then use the following experimental dependences to close system (1)-(3), as
in [2, 4]:
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Following the procedure of [4], and using the second of Egs. (4), we convert Eq. (2) to
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where the subscript 1 refers to the inlet cross section, and where
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The constant A is determined by comparing Eq. (5) with experimental data for a plate; it is equal to
A =0.016 at Re values for which the Blasius equation holds (m =1/4) or A =0.0076 at Re values for which
the Faulkner equation holds (m =1/6) [5].

Divergence equation (3) can be written in terms of notation (6) as
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To obtain a third equation to close system (5), (7) with the three unknowns (S, z, H), we multiply
Egq. (1) by H* and subtract the result from Eq. (2), finding
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Using Eq. (4) and carrying out some straightforward manipulations, we convert Eq. (8) to
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Fig. 1. Dependence of the dimensionless coordinates ¢ = x/ riRe%/s of the separation point and
junction on the number k = Re}/ Stang/2: T) separation line; II) junction line; III) no-junction line;
a) dependence of the dimensionless coordinate of separation point on k for large k.

Fig. 2. Dependence of the dimensionless static pressure P on ¢: I) separation line; II) junction
line, The numbers show constant k lines; a) dependence of the dimensionless pressure Psep at
the separation point on k.

generally depends on only H and Re, ,. However, because of the small value of the exponent (0.268 —m),
which is equal to 0.018 at m =1/4 and 0.1 at m = 1/6, the Re,, dependence of F, is weak and can be ne-
glected; i.e., we can calculate F, for some average Re, .. For the subsequent calculations we use the F,
values corresponding to Re,, = 104, Following the procedure of [3], we can reduce system (5), (7), (9)
to a single integro-differential equation for the function z.

For a computer calculation, however, it is more convenient to write system (5), (7), (9) as two dif-
ferential equations; the first is obtained by differentiating Eq. (5), while the second is obtained by differen-
tiating Eq. (7), eliminating dH/d¢ by means of Eq. (9), and then solving the resulting equation for dz/de.
The result is
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where the prime denotes differentiation with respect to ¢. This syu.tem must be integrated with the initial
conditions
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In the case in which the generatrices of the channel are straight and form an angle # we have
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Fig. 3. Dependence of 6* on ¢: I) separation line; II) junction line; IIT) no-junction line. The numbers
show constant k lines; a) diagram used to design a channel with a curvilinear generatrix.

Fig. 4. Diagram used to determine H: I) separation line; I) junction line; III) no-junction line. The
numbers show constant k lines.

where k > 0 corresponds to divergent channels and k < 0 corresponds to convergent channels. If the
velocity profile at the entrance to the channel is uniform (6 =8* = 0), all the quantities involved turn out
to depend on only k and can be conveniently tabulated. We integrated system (10) for this case withm =1/6
on a computer by the Runge —Kutta method. Since we have 6} = 6}* = 0 in this case, we have z; =1 and §;
=0 in the entrance cross section, and z' cannot be determined from the second equation. The numerical
calculation is therefore possible only beginning at some ¢ > 0. Near ¢ = 0 the solution can be written in
series form:
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Substituting this series into system (5), (7), (9), we can determine the coefficients aj. In particular,
for m =1/6 this series becomes
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The calculation is carried out either up to the separation point or up to the junction point for the
boundary layers. The separation point is governed by the separation value of the form parameter [4], H =3,
while the junction is governed by the dimensionless layer thickness, 6 /r = 1. To find the latter we use
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which corresponds to a power-law velocity distribution in the boundary layer. Substituting 6/r =1 into

these dependences, and eliminating n from the results, we easily find a relation between 6*/r and H at the
junction point. This dependence is shown graphically in Fig. 4 (curve II).

Figure 1 shows the calculated results; the layers are seen to join at k < 0.18. The calculation shows
that with k < —0.05 the layers join near the point at which the walls of the convergent channel meet, so that
in practice we can assume that the layers do not join in these channels. With k > 0.18 the separation occurs
before the layers join. All three regions are shown in Fig. 1; the curve in the region k < —0.05 gives the k
dependence of the coordinate of the point at which the walls of the convergent channel meet. The dependence
of this coordinate on k is interesting, displaying minimum at k = 0.08. As k changes in either direction from
this value, the coordinate of the junction increases. Since this coordinate increases with increasing k, the
rate at which the boundary layer increases along the length of the channel, which is a function of k, in-
creases more slowly than the rate at which the cross-sectional area changes. Analogously, the increase
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in the coordinate of the junction with decreasing k can be attributed to the relation between the rate at
which the boundary layer grows and the rate of change of the cross-sectional area,

Figures 2-4 show the changes along the channels in the dimensionless static pressure P= (P—-Py)
/ pU%/ 2 the dimensionless displacement thickness 6* =6* /r,and the form parameter H = 6* /§** Using
these results we can easily determine all the pertinent characteristics of the flow of any cross section. In
particular, the drag coefficient in the channel can be determined from [1]
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where H* is given by the third of Eqs. @).

The reduction coefficient for the static pressure is numerically equal to the relative static pressure
at the end of the channel, while the total drag coefficient (including the drag at the exit velocity) is

E,=1—nm

Figure 2 shows the dependence of the dimensionless static pressure Psep at the separation point on

k (Fig. 2a). We see from this figure that in this case the dependences of Pgep on Re and 4 are slightly
stronger than in the case of laminar flow in a planar channpel, in which Pse is essentially independent of
Re and 6 and equal to ~0.3 [3]. For turbulent flow Psep turns out to be essentially independent only for
k > 1, for which we have Pgq, = 0.8. As k decreases from 1 to 0.18, Psep increases to 0.9. For channels
with k < 0.18, the boundary layers join. Thus a much greater part of the dynamic flow pressure applied to
the convergent channel can be reduced during turbulent flow before separation than during laminar flow.
This circumstance results from the much more rapid exchange of momentum between the core of the flow
and the boundary layer in turbulent flow.

Figure 4 shows the form parameter H along the channel as a function of 6*. The curves for negative
values essentially coincide with that for k = 0. It follows that for negative k the form parameter H changes
slowly along the channel and is essentially equal to the value 1.33 corresponding to gradient-free flow. At
large positive k, which corresponds to divergent flow, H increases rapidly along the channel, so that the
assumption of constant H, which is frequently used to simplify calculations, turns out to be valid only for
convergent flow. Figure 4 also shows the dependence of H on 6*, which corresponds to junction of the
boundary layers (curve II). The intersections of this curve with k = const lines yield the values of H and
5% at the junctions.

Finally, we note that these curves can be used to work out a simple approximate method for calcu-
lating the boundary layer in a channel having an arbitrary curvilinear generatrix, similar to the method
proposed in [3]. For this purpose the channel must be broken up into regions in each of which ¢ (and thus
k) can be assumed constant, If we now use the standard assumption on which the one-parameter methods
are based — that the boundary layer within each of these regions develops as it would in a channel with
straight generatrices for the same value of k and for the same value of one of the dimensionless charac-
teristic thicknesses (e.g., 6*) at the entrance, we can use Figs. 3 and 4 to approximately determine all
the necessary quantities in any cross section of the channel having a curvilinear generatrix. If the profile
at the entrance to the channel is uniform (51* = 5{** = 0), we can use the known value of k to find the cor-
responding point, 1, on the curve (Fig. 3). Moving a distanceA¢, (the dimensionless length of the first
region) along the k = const curve beyond point 1, we find the value of 3—; in the channel of the corresponding
region. Now moving along a horizontal line to the curve k = const which corresponds to k,, we find point 2,
which corresponds to the beginning of the second region, etc. The form parameter in any cross section is
determined with the help of Fig. 4 from the known 6*. Knowing 6* and H, we can easily determine the
separation point, the junction, and all other characteristics. If the profile at the entrance to the channel
is nonuniform (5 = 0; -51** # 0), the calculation can be carried out in an analogous manner, but adequate
results can be obtained only when the relation among the quantities 0}, H = 5}/5F*, andk, = Rej tang/2
specified at the entrance cross section corresponds to Fig. 4, i.e., only when the value found for any one
of these from two specified quantities and Fig. 4 differs little from the specified value for this (third) quan-
tity.

NOTATION
X,y are the coordinates (the x axis coincides with the symmetry axis of the channel);
8 is the angle between the channel walls;
Ty is the radius of the entrance cross section of the channel;
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is the radius of the channel cross section;
is the flow velocity in the core;

is the flow velocity in the boundary layer;
is the boundary-layer thickness; '

is the displacement thickness;

is the momentum-loss thickness;

is the energy-loss thickness;

are the form parameters;

is the shear stress;

is the shear stress at wall;

is the density;

is the kinematic viscosity;

are the Reynolds numbers;

is the exponent in the tangential-stress expression, equal to 1/4 according
to Blasius and 1/6 according to Faulkner;

is the dimensionless radius;

are the dimensionless displacement thickness, momentum-loss thickness,
and energy-loss thickness;
is the dimensionless coordinate;

n is the exponent in the power-law velocity distribution;
Q is the liquid flow rate.
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