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The development of a turbulent boundary layer  in an ax i symmet r ic  channel is analyzed with an 
an account of the mutual effects of the boundary layer  and the core of the flow. The coordi -  
nates of the separat ion point, the coordinates of the junction, and other charac te r i s t i cs  a re  
found as functions of the Reynolds number and the channel geometry.  A simple approximate 
method is proposed for calculating the boundary layer  in a channel with an a rb i t r a ry  curv i -  
l inear  generatr ix.  

In solving internal problems in boundary- layer  theory one must  take into account the mutual effects 
of the boundary layer  and the core of the flow. These effects a re  usually taken into account by the method 
of success ive  approximations [1, 2]; in severa l  cases  the calculation must be repeated several  t imes or 
car r ied  out for parts  of the channel, r a ther  than for the channel as a whole, in order  to achieve the neces -  
s a ry  accuracy.  In part icular ,  this is t rue of calculations car r ied  out for divergent channels [2]. 

Below we solve the problem of the development of a turbulent boundary layer in an ax isymmetr ic  
channel, taMng account of the mutual effects, by reducing the problem to a single integro-different ial  ~ a a -  
tion, as  was done for planar channels and laminar  flow in [3]. To calculate the charac te r i s t i cs  of the 
boundary layer  we will use the integral  method of [4], which is based on a joint solution of the integral  
momentum and energy re la t ions  and the use of experimental  data. In this approach, the problem is de-  
scribed by: 
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i.e., the integral  momentum and energy relat ions and the divergence equation, respectively.  As in [3], 
we are  using a coordinate sys tem whose x axis coincides with the symmet ry  axis of the channel. As was 
shown in [3], the equations written in t e rms  of this coordinate sys tem are  essential ly the same as the 
ord inary  equations, writ ten in t e rms  of the coordinate sys tem in which the x axis is reckoned along the 
surface in the flow. 

In Eqs. (1)-(3), the charac te r i s t i c  boundary- layer  thicknesses a re  defined by 
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Using these  c h a r a c t e r i s t i c  t h i cknesses ,  we can conver t  the in teg ra l  r e l a t ions  fo r  a x i s y m m e t r i c  
flow [2, 6], wr i t t en  with an  accoun t  of the effect  of t r a n s v e r s e  cu rva tu r e ,  to the f o r m  of the o r d i n a r y  equa-  
t ions,  wr i t t en  under  the a s s u m p t i o n  that  the boundary  l a y e r  is thin in c o m p a r i s o n  with the rad ius  c u r v a -  
t u r e  of the su r face .  We can then use  the fol lowing expe r imen ta l  dependences  to c lose  s y s t e m  (1)-(3), as  
in [2, 4]: 
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Fol lowing the p r o c e d u r e  of [4], and us ing  the second of Eqs. (4), we conve r t  Eq. (2) to 
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w h e r e  the subsc r ip t  1 r e f e r s  to the inlet  c r o s s  sec t ion,  and whe re  
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The cons tan t  A is de t e rmined  by c o m p a r i n g  Eq. (5) with expe r imen ta l  data for  a plate;  it is  equal to 
A = 0.016 at Re va lues  fo r  wMch the Blas ius  equat ion holds (m = 1 /4 )  or  A = 0.0076 at Re va lues  for  which 
the Fau lkner  equat ion holds (m = 1 /6 )  [5]. 

D ive rgence  equat ion (3) can be wr i t t en  in t e r m s  of notat ion (6) as  
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To obtain a th i rd  equat ion to c lose  s y s t e m  (5), (7) with the  t h r ee  unknowns (S, z, H), we mul t ip ly  
Eq. (1) by H* and sub t r ac t  the  r e s u l t  f r o m  Eq. (2), f inding 
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Using Eq. (4) and c a r r y i n g  out s o m e  s t r a i g h t f o r w a r d  manipula t ions ,  we conver t  Eq. (8) to 
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is  a funct ion of only H. The funct ion 
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Fig.  1. Dependence  of the d i m e n s i o n l e s s  coo rd ina t e s  ~ = x / r l R e ~ / 6  of the s epa ra t ion  point and 
junct ion on the n u m b e r  k = Re] /6  tan  0 / 2 :  I) s epa ra t i on  line; II) junct ion l ine;  III) no- junc t ion  line; 
a) dependence  of  the d i m e n s i o n l e s s  coord ina te  of s epa ra t ion  point on k for  l a r g e  k. 

Fig.  2. Dependence  of  the d imens ion l e s s  s ta t ic  p r e s s u r e  P on q~: I) s epa ra t i on  line; II) junct ion 
line. The n u m b e r s  show cons tan t  k l ines;  a) dependence  of the d imens ion l e s s  p r e s s u r e  P s e p  at 
the s e p a r a t i o n  point on k. 

g e n e r a l l y  depends  on only H and Re** .  However ,  b e c a u s e  of the sma l l  va lue  of the exponent  (0.268 - m), 
which is  equal to 0.018 at m = 1 / 4  and 0.1 at  m = 1/6 ,  the Re** dependence  of F 2 is weak  and can be ne -  
g lec ted;  i .e . ,  we can ca lcu la te  F 2 for  s o m e  a v e r a g e  Re**. F o r  the  subsequent  ca lcu la t ions  we use  the F 2 

values  c o r r e s p o n d i n g  to Re** = 104. Fol lowing  the p r o c e d u r e  of [3], we can r e d u c e  s y s t e m  (5), (7), (9) 
to a s ingle  i n t e g r o - d i f f e r e n t i a l  equat ion for  the funct ion z. 

F o r  a c o m p u t e r  ca lcula t ion,  however ,  it is m o r e  convenient  to wr i t e  s y s t e m  (5), (7), (9) as  two dif-  
f e r en t i a l  equat ions ;  the f i r s t  is  obtained by d i f fe ren t ia t ing  Eq. (5), while the second is obtained by d i f f e ren -  
t ia t ing  Eq. (7), e l imina t ing  d H / d ~  by means  of Eq. (9), and then so lv ing  the  r e su l t i ng  equat ion fo r  d z / d o .  
The r e s u l t  is  

r,~+i 
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z' = z[2 (m q- 1) rr'za~"~S - -  A 7 "*+~ (r  ~ . z) - -  2 (m q- 1) FJ'~+IzaS"~+t~] , (10) 
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w h e r e  the  p r i m e  denotes  d i f fe ren t i a t ion  with r e s p e c t  to ~. This  s y b t e m  m u s t  be in tegra ted  with the ini t ia l  
condi t ions  

9 = 0 ,  z ~ = 1 - - 2 - 5 ~ ,  S 1 = [  
(1-2~: 7 

In the  c a s e  in which  the g e n e r a t r i c e s  of the channel  a r e  s t r a i g h t  and f o r m  an angle  0 we have 

r = l + k q o ;  k = R e ~  tg 0 
2 
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Fig. 3. Dependence of ~* on (p: I) separat ion line; II) junction line; III) no-junction line. 
show constant k lines; a) d iagram used to design a channel with a curvi l inear  generatr ix.  

Fig. 4. Diagram used to determine H. I) separat ion line; II) junction line; HI) no-junction line. 
numbers  show constant k lines. 

The numbers 

The 

where k > 0 corresponds  to divergent channels and k < 0 corresponds  to convergent channels. If the 
velocity profile at the entrance to the channel is uniform ( ~  = ~ *  = 0), all the quantities involved turn out 
to depend on only k and can be conveniently tabulated. We integrated sys tem (10) for tMs case with m = 1 / 6  
on a computer  by the Runge-Kut t a  method. Since we have ~ = 5~* = 0 in this case, we have z 1 = 1 and S 1 
= 0 in the entrance c ross  section, and z '  cannot be determined f rom the second equation. The numerical  
calculation is therefore  possible only beginning at some (p > 0. Near Co = 0 the solution can be written in 
ser ies  form: 

1 l ~ 2 m  l + ( i - - l ) m  
1 l + m  z = l ~ alcp -~ a.qD ~- a~ l+m -~ . . . + aIW l+m ~ . . . 

Substituting this se r ies  into sys tem (5), (7), (9), we can determine the coefficients a t . In part icular ,  
for m = 1 / 6  this ser ies  becomes 

z = 1 --  0.0405~ G/7 -~- 2k~ + 0.00312~plwT--0.17kfp 13/7 ~ , . . .  

The calculation is car r ied  out either up to the separat ion point or  up to the junction point for the 
boundary layers .  The separat ion point is governed by the separat ion value of the form parameter  [4], H = 3, 
while the junction is governed by the dimensionless layer  thickness,  6 / r = 1. To find the lat ter  we use 

r n -51  r 2 ( n + 2 )  
5"* n 6 n f 6 \  2, 

r -- (n-~-l)(2n+l)  r 2(n-k~(n-~-2) t-;) 
which corresponds  to a power-law velocity distribution in the boundary layer.  Substituting a i r  = 1 into 
these dependences, and eliminating n f rom the resul ts ,  we easi ly find a relat ion between 5 * / r  and H at the 
junction point. This dependence is shown graphically in Fig. 4 (curve II). 

Figure ! shows the calculated resul ts ;  the layers  a re  seen to join at k < 0.18. The calculation shows 
that with k < - 0 . 0 5  the layers  join near  the point at which the walls of the convergent channel meet,  so that 
in pract ice  we can assume that the l ayers  do not join in these channels. With k > 0.18 the separat ion occurs  
before the layers  join. All three regions a re  shown in Fig. 1; the curve in the region k < -0 .05  gives the k 
dependence of the coordinate of the point a t  which the wails of the convergent channel meet. The dependence 
of this coordinate on k is interesting,  displaying minimum at k = 0.08. As k changes in either direct ion f rom 
this vaIue, the coordinate of the junction increases .  Since this coordinate increases  with increas ing k, the 
rate  at which the boundary layer  inc reases  along the length of the channel, which is a function of k, in-  
c reases  more  slowly than the rate at which the c ross - sec t iona l  area  changes. Analogously, the increase  
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in the coordinate of the junction with decreas ing k can be attributed to the relat ion between the rate at 
which the boundary layer  grows and the ra te  of change of the c ross - sec t iona l  area.  

Figures  2-4 show the changes along the channels in the dimensionless static p ressu re  P = (P - P1) 
/pU~/2, the dimensionless displacement thickness "6" = 6 * / r ,  and the form parameter  H = 6" /5**. Using 
these resul ts  we can easily determine all the pertinent charac te r i s t i cs  of the flow of any c ross  section. In 
part icular ,  the drag coefficient in the channel can be determined f rom [1] 

2~*** . -~*** ~* H* 
= r2(l - 2-5') 3 ' -- H ' 

where H* is given by the third of Eqs. (4). 

The reduction coefficient for the static pressure is numerically equal to the relative static pressure 
at the end of the channel, while the total drag coefficient (including the drag at the exit velocity) is 

Figure 2 shows the dependence of the dimensionless static pressure_Pse  p at the separat ion point on 
k (Fig. 2a). We see f rom this figure that in this case the dependences o_f Psep on Re and 0 a re  slightly 
s t ronger  than in the case of laminar  flow in a planar channel, in which Psep is essential ly independent of 
Re and 0 and equal to ~0.3 [3]. For  turbulent flow P s e p  turns out to be essential ly independent only for 
k > 1, for which we have Psep = 0.8. As k decreases  f rom 1 to 0.18, Psep increases  to 0.9. For  channels 
with k < 0.18, the boundary layers  join. Thus a much grea ter  part  of the dynamic flow pressu re  applied to 
the convergent channel can be reduced during turbulent flow before separat ion than during laminar flow. 
This c i rcumstance  resul ts  f rom the much more  rapid exchange of momentum between the core of the flow 
and the boundary layer  in turbulent flow. 

Figure 4 shows the form parameter  tt along the channel as a function of "5". The curves  for negative 
values essential ly coincide with that for k = 0. It follows that for negative k the form parameter  H changes 
slowly along the channel and is essential ly equal to the value 1.33 corresponding to gradient - f ree  flow. At 
la rge  positive k, which corresponds  to divergent flow, H increases  rapidly along the channel, so that the 
assumption of constant H, which is frequently used to simplify calculations, turns out to be valid only for 
convergent flow. Figure  4 also shows the dependence of H on ~*, which corresponds to junction of the 
boundary layers  (curve II). The intersect ions of this curve with k = const lines yield the values of tt and 
"5" at the junctions. 

Finally, we note that these curves can be used to work out a simple approximate method for calcu-  
lating the boundary layer  in a channel having an a r b i t r a r y  curvi l inear  generatr ix,  s imi lar  to the method 
proposed in [3]. For  this purpose the channel must  be broken up into regions in each of which 0 (and thus 
k) can be assumed constant. If we now use the standard assumption on which the one-paramete r  methods 
a re  based - t h a t  the boundary layer  within each of these regions develops as it would in a channel with 
s traight  genera t r ices  for the same value of k and for the same value of one of the dimensionless charac-  
te r i s t ic  thicknesses  (e.g., ~*) at the entrance,  we can use Figs. 3 and 4 to approximately determine all 
the necessa ry  quantities in any c ross  sect ion of the channel having a curvi l inear  generatrix.  If the profile 
at the entrance to the channel is uniform ( ~  = 6~* = 0), we can use the known value of k to find the c o r -  
responding point, 1, on the curve (Fig. 3). Moving a distanceAp~ (the dimensionless length of the f i rs t  
region) along the k = const curve beyond point 1, we find the value of ~ in the channel of the corresponding 
region. Now moving along a horizontal line to the curve k = const which corresponds  to k2, we find point 2, 
which corresponds  to the beginning of the second region, etc. The form parameter  in any c ross  section is 
determined with the help of Fig. 4 f rom the known ~*. Knowing ~* and H, we can easi ly determine the 
separat ion point, the junction, and all other charac ter i s t ics .  If the profile at the entrance to the channel 
is nonuniform (6~ ~ 0; ~ *  ~ 0), the calculation can be car r ied  out in an analogous manner,  but adequate 
resul ts  can be obtained only when the relat ion among the quantities 5~*, H = 6~/6~*, and k s = R e m t a n  0 /2  
specified at the entrance c ros s  sect ion corresponds  to Fig. 4, i.e.,  only when the value found for any one 
of these f rom two specified quantities and Fig. 4 differs little f rom the specified value for this (third) quan- 
tity. 

NOTATION 

x, y are the coordinates (the x axis coincides with the symmetry axis of the channel); 
0 is the angle between the channel walls; 
r 1 is the radius of the entrance c ross  section of the channel; 
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is the radius of the channel c ross  section; 
is the flow veloci ty in the core;  
is the flow veloci ty in the boundary layer!  
is the boundary- layer  thickness; 

is the displacement  thickness;  

is the momentum-loss  thickness;  

is the energy- loss  thickness;  

a re  the fo rm paramete r s ;  
is the shear  s t r ess ;  
is the shear  s t r e s s  at wall; 
is the density; 
is the kinematic viscosi ty;  
a r e  the Reynolds numbers;  
is the exponent in the t angen t ia l , s t r ess  expression,  
to Blasius and 1 / 6  according to Faulkner;  
is the dimensionless  radius;  

equal to 1 /4  according 

a r e  the dimensionless  displacement  thickness,  momentum-loss  t h i c k n e s s ,  
and energy- loss  thickness;  
is the dimensionless  coordinate;  

is the exponent in the power- law veloci ty  distribution; 
is the liquid flow rate .  
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